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information [5]). Hereafter, the term direct numerical sim-
ulation (DNS) refers to the numerical integration of theDirect numerical simulation of a dilute suspension of finite-vol-

ume spheres requires computation of the time-varying fluid field exact equations of motion for the fluid and particle phases
and updating the particle momenta and positions, taking into ac- with essentially no modeling assumptions.
count the effects due to particle–particle collisions. Collision calcula- For relatively dilute suspensions (i.e., volume fractionstions are inherently an order N2

p operation, where Np is the number
below 0.1%), there have been a number of investigationsof particles in the system. Typical simulations contain 105–106 parti-
(see, for example, [6–9]) that neglect the finite volume ofcles making the brute force computation of collisions prohibitively

expensive. An alternative algorithm, based on molecular-dynamic- the particles, and rather treat the particles as point masses.
simulation strategies, is proposed in this paper. A second consider- In addition, we include the Lagrangian particle studies of
ation in simulating a finite-volume particle suspension is how the

Yeung and Pope [10] and more recently Yeung [11] in thisparticle forces should be coupled back into the fluid calculation (so-
category since the algorithms are essentially the same. Thecalled reverse coupling). Careful consideration of the energy budget

for the particle and fluid phases indicates that interpolation schemes critical numerical question in these studies is the interpola-
for forward and reverse coupling must be symmetric in order to tion of the grid velocities to the particle positions. As shown
ensure proper behavior of the overall energy balance. Asymmetric by Yeung and Pope [10] and subsequently by Balachandar
interpolation schemes will lead to errors of one plus the error of

and Maxey [12], the need for a high-order interpolationthe least accurate interpolation method per iteration. Of course,
(third order and higher) is essential for accurate represen-global errors may be much larger due to a cumulative effect of the

systematic deviation. Q 1996 Academic Press, Inc. tation of the particle positions, especially for describing
the particle Lagrangian history and particle self-diffusion
coefficient. Particle simulations of inhomogeneous turbu-

1. INTRODUCTION lent flows have also been performed. For example, the
boundary layer flow considered by Kallio and Reeks [13]

The emergence of direct numerical simulations as an and the channel studies by Kontomaris and Hanratty [14],
alternative tool for investigating turbulent particle suspen- McLaughlin [15], Brooke et al. [16], and Brooke et al. [17]
sions has been driven by the ever-increasing need for reli- neglect the particle volumes as well; although, their studies
able simultaneous data on the particle and fluid phases in of deposition [16, 17] do assume a particle radius for the
a particle suspension. Precise information on the two purpose of determining deposition rates. It is important
phases will enable investigations of subtle issues such as to note that checking for wall collisions requires O(Np)
partitioning of energy transfer between phases [1], the operations (where Np is the number of particles), whereas
mechanism of turbulence suppression in particle flows [2, particle–particle collisions requires O(N2

p) operations, thus
3], and particle collision dynamics [4], amongst many oth-

the computational effort for the deposition studies is rela-
ers. Such detailed information can only be found from

tively small.
numerical simulation because simulation yields the entire

A second category of studies of particle systems con-
velocity field of the particle and fluid phases simultane-

sisting of large particles at very high concentrations (i.e.,ously, to a degree of precision limited only by the numerical
volume fractions above 30%) is the so-called granular flowmethod and grid resolution. The quantitative assessment
case. Here the relatively massive particles behave like aof the simultaneous behavior of both velocity fields would
‘‘gas phase’’ with a large number of particle–particle colli-be difficult, if not impossible, to achieve by conventional
sions. The interstitial gas, occupying such a small volumemeans (although it is noted that liquid-phase experiments
and having so little inertia, is often neglected in this regime.in the near future shall be capable of providing similar
There have been a number of simulations of this system
[18–23] in which the particle phases are tracked with an
algorithm similar to those used in molecular dynamics sim-*Author to whom inquiries should be addressed.
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ulations, augmented by a relatively sophisticated algorithm method we employ. Our discussion will be limited to a
periodic cube of fluid that contains Np spherical particles,to describe the inelastic collision dynamics [24]. Indeed,

these flows are essentially collision dominated; that is, colli- each of which may be of a different size. To achieve reason-
ably accurate statistics, Np typically ranges between 105–106sions are very important because they are the principle

way in which the solid phase loses energy. The system is particles. The particle trajectories are likewise periodic, so
that particles that exit one side of the box appear instanta-somewhat simpler than the simulations performed on the

dilute suspensions because the gas phase is ignored; how- neously on the opposite side. The numerical algorithm
updates the positions and momenta of the individual parti-ever, the accounting of all particle–particle collisions is

more sophisticated than the simple ‘‘point-mass’’ approxi- cles in a Lagrangian sense, and the fluid phase by solving
the incompressible Navier–Stokes equations shown below.mation.

Two earlier investigations by Sundaram and Collins [25,
26] provide motivation to perform simulations that include A. Governing Equations
the effect of the gas phase and finite-volume particles. To

The governing equations for determining the nth particlesummarize their results, Sundaram and Collins developed
position and momentum in time are respectivelyrelationships for several two-point correlations in a parti-

cle–fluid system, each of which required simultaneous in-
formation about the position and velocity of the particles dxn

p

dt
5 vn

p (1)
and fluid as an input. Two-point correlations are useful for
characterizing the spatial arrangement of the particles and
for incorporating the multitude of length scales present mn

p
dvn

p

dt
5 mn

p
[u(xn

p) 2 vn
p]

tn
p

1 ONp

j51
j?n

Fjn
p , (2)

in turbulent flows in a self-consistent manner [27]. Their
analysis demonstrated that the mathematically accurate
method for characterizing two-point correlations or spectra

where xn
p , vn

p , and mn
p are center location, velocity, and massof an inhomogeneous gas–solid suspension is to perform

of the nth particle. u(xn
p) is the velocity of fluid ‘‘in theintegrals over the particle, fluid, and mixed phases. They

neighborhood’’ of the nth particle (note, technically therealso showed that many spectral correlations can have an
cannot be fluid at the center of a particle, however, inappreciable contribution from the particle phase, even
practice the fluid velocity varies slowly over distances onthough the suspension is ‘‘dilute,’’ because the density of
the order of the particle radius; hence u(xn

p) is a goodthe particles is much larger than that of the suspending
approximation for the local fluid velocity in the neighbor-fluid. Consequently, the most general and versatile spectral
hood of a particle). tn

p is the response time of the particleanalysis of a suspension should include the contributions
given by tn

p ; rps 2
n/(18e), where sn is the diameter of thefrom the finite-volume spheres and the continuous fluid

nth particle, rp is the density of the particles, and e is thephase. This provides motivation for seeking an algorithm
molecular viscosity of the fluid. Fjn

p is the impulsive forcefor simulating a fluid laden with finite-volume spheres.
that results from particle–particle collisions. The first termIn this paper, we consider the numerical issues associated
on the right-hand side of Eq. (2) is the leading force termwith simulating finite-volume particles with a participating
due to Stokes drag, and the second accounts for collisions.gas phase. Section 2 describes the governing equations and
(The force has been simplified to include the Stokes draggives an overview of the numerical method used in the
only; however, this has no bearing on the analysis pre-direct numerical simulations. We then consider two numer-
sented herein. For the complete expression, see Maxeyical consequences of finite volume spheres: (i) Finite-vol-
and Riley [30].)ume particles will collide; thus an algorithm for accounting

Assuming the particle sizes are small as compared tofor collisions between particles is required. (ii) The pres-
the length scales of the turbulence and, furthermore, thatence of a known particle volume has implications for the
the volume fraction of particles is relatively small (i.e., lessreverse coupling terms in the fluid equations. Each of these
than 0.1%), the equations of motion for the fluid can betopics is discussed in detail in Sections 3 and 4 respectively.
approximated byA summary and suggestions for future implementations is

then given in Section 5.
= ? u 5 0 (3)

2. OVERVIEW OF NUMERICAL SIMULATIONS

rFu
t

1 = ? (uu)G1 =p 5 e=2u
(4)The technique of direct numerical simulation of particle-

laden flows has been discussed extensively elsewhere in
the literature [28, 29], therefore the purpose of this section 2 ONp

n5l

mn
p[u(x) 2 vn

p]
tn

p
d(x 2 xn

p),
is to summarize the governing equations and numerical
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where r is the density of the fluid (assumed constant), e
is the molecular viscosity, u is the fluid velocity at a point
x, p is the pressure, and d is the three-dimensional Dirac
delta function. Equations (3) and (4) are approximate in
that they neglect the volume that the particle phase occu-
pies (i.e., dilute approximation). At this point, it is conve-
nient to draw attention to an important parameter, the
particle Stokes number defined as St ; «1/2tp/n1/2, where
« is the turbulent energy dissipation rate and n is the kine-
matic viscosity of the fluid. Physically, the particle Stokes
number is the ratio of particle response time to the Kolmo-
gorov time scale.

B. Numerical Approximation

The particle positions and momenta are updated using
a second-order Adams–Bashforth procedure. Because the
fluid velocity is known only at discrete vertex points, the
fluid velocity must be interpolated to the particle positions.
Earlier investigations have compared several interpolation

FIG. 1. Division of computational domain into M3 cells. Potentialschemes [10, 12, 14] and shown that third-order accuracy
collision partners for a particle in a given cell are found in the neighbor-

is required at a minimum to accurately track the particle hood comprising that cell and the 26 cells that surround the cell of interest,
trajectories. In the present simulations, a cubic Lagrangian as shown in the center of the diagram.
interpolation scheme is used. A novel feature of the present
simulations is the incorporation of particle–particle colli-
sions. In principle, for a hard-sphere system, particle colli-
sions occur at discrete instants in time, thus the particle and molecular simulations of hard spheres. In turbulent
position algorithm must sort out the effects of all collisions flows, particles are advected by the time-varying flow field
that occur over each finite time interval Dt and enact the and, therefore, particle interactions cannot be projected
proper collision rules. Section 3 discusses in detail the forward in time indefinitely. This implies that collisions
strategies used to detect collisions and to carry out the cannot be predicted over time intervals larger than the
collision dynamics. particle update time. While the present work borrows ex-

The fluid velocity is updated in two separate steps. The tensively from ideas prevalent in molecular dynamics liter-
first updates the convection, diffusion, and pressure terms ature [33–35], this difficulty requires us to tailor their tech-
using a pseudospectral algorithm similar to the one de- niques to meet our specific needs. In the following section,
scribed in Canuto et al. [31]. Partial de-aliasing is accom- for the sake of completeness, we discuss core concepts of
plished by zeroing wavenumbers beyond 8/9 of kmax , as existing algorithms, while highlighting, wherever neces-
originally suggested by Patterson and Orszag [32]. The sary, unique aspects demanded by the nature of turbulence.
particle force (so-called reverse coupling) terms are then Recall that we make the assumption that the particles
evaluated. The numerical details associated with estimat- behave as hard spheres. The term ‘‘particle interaction’’
ing the reverse-coupling terms at the vertex points is dis- in this system is, therefore, synonymous with hard-sphere
cussed in greater detail in Section 4. Time integration for ‘‘collision’’ while ‘‘dynamic partners’’ refers to the ‘‘collid-
the entire system of equations is done by an efficient fourth- ing particles.’’ The simplicity of the hard-sphere potential
order Runge Kutta routine. renders it extremely attractive in view of the computational

complexity of the other aspects of particulate turbulence.
3. PARTICLE–PARTICLE INTERACTIONS Prescribing a hard-sphere potential between particles is

thus treated as a first step in including particle interactions.
There are numerous algorithms for describing particle Comments on certain other potentials of interest and their

collisions in so-called molecular dynamics simulations that implementation are deferred until the end of this section.
may be useful in the present context. However, in a particu- The particle motion (accurate to leading order) is de-
late turbulent flow, the problem of determining particle scribed by Eqs. (1) and (2) shown in Section 2. The particle
trajectories and, in particular, particle collisions is depen- update can be broadly divided into four segments:
dent not only on particle–particle interactions but also on
time and position varying fluid turbulence. This illustrates (i) Calculate the net force of fluid on each particle

and update the particular momentum.the fundamental difference between particulate turbulence
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FIG. 2. (a) Algorithm for a proactive, time sequenced collision detection and enactment procedure. Note that the decision point upon entry
into the module requires computation of collision times for all neighborhood particle pairs. (b) Algorithm for a retroactive, time-sequenced collision
detection and enactment procedure. Note that the decision point upon entry into the module requires only a logical check for all neighborhood
particle pairs.

(ii) Identify particles that will collide (or have col- 105–106 particles, it is clear that step (ii) is the computa-
tional ‘‘rate limiting step.’’ We will, consequently, focuslided) in a time interval Dt.
on algorithms to minimize the computational effort spent(iii) Enact elastic collisions between identified particles
on identifying dynamic partners from among all particlein the order they occur.
pairs.(iv) Update the particle positions using Eq. (1).

The force on a given particle (Stokes drag) depends on
A. Neighbor Lists

the interpolated fluid velocity and involves O(Np) opera-
Keeping in mind that it is terribly inefficient to have totions, not considering the mechanics of the interpolation

go through the entire list of particles in order to determineitself. Although this computation could rapidly escalate,
the dynamic partners of a given particle, the notion ofbased on the complexity of the interpolation, the total
neighbor lists is introduced. Particle j is defined as a neigh-computational effort will still grow only linearly with Np .
bor of particle i (and vice versa) if the pair separationFor further discussion on the subject of interpolation we
distance rij

p is less than a defined length, R (where rij
p ;refer the reader to the following studies [10, 12, 14]. Imple-

mentation of impact dynamics, while certainly dependent ur ij
pu and r ij

p ; x i
p 2 x j

p). In the original concept [36], all of
the neighbors of each particle are stored contiguously inon the nature of the particle interactions, is invoked only

for the restricted subset of colliding particles and, hence, an array which constitutes the neighbor list. The particle
interaction calculation for a single particle, then, loops overis not of concern in the computational budget. Identifica-

tion of particle collisions, on the other hand, requires exam- only the restricted set of neighbors of that particle, as
specified in the list. The list itself has to be updated everyining As Np(Np 2 1) particle pairs and, therefore, involves

O(N2
p) operations. Thus, considering that we typically track few time steps. A quick idea of the size of the neighbor
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FIG. 2—Continued

list can be gained from the following consideration; the B. Cell Index Method
number of particles in the neighborhood volume is on The cell-index method [34, 37], while incorporating the
average FdfR3(Np/L3). concept of neighbor lists, presents a more efficient way of

Summing over all the particles and avoiding double organizing the updating neighbor information. The cubic
counting the same pair, the total number of elements in simulation box is divided into a regular lattice of M3 cells
the neighbor list would be, approximately SdfR3(N2

p/L3). (see Fig. 1). The potential dynamic partners of a given
The reduction in computational effort is therefore given particle in any cell are found from the other particles in
by Fdf(R3/L3). In principle, the smaller the value of R/L the cell plus the particles in all the neighboring cells. This
the greater the savings; however, R/L cannot be reduced is illustrated in Fig. 1 by the central cube highlighting the
indefinitely because eventually particles may interact with 27 neighboring cells. Considering that there are on average
others that originated outside of the neighborhood. Such Np/M3 particles in each cell and 27 neighboring cells to
interactions would be missed by the proposed algorithm. be searched per particle, this procedure (avoiding double
Thus, an optimal value of R/L exists that minimizes the counting) requires O(SwJ N2

p/M3) operations. The list of par-
computational effort while not introducing significant er- ticles in each cell is set up and updated using linked lists.
rors due to unaccounted for collisions. We will return to While there is some initial overhead in setting up the cell
this issue in the next subsection. structure, the sorting of particles is fairly rapid (O(Np)).

This illustrates the savings in compute time found by Additonal details can be found in the excellent text by
examining a reduced subset of possible dynamic partners. Allen and Tilldesley [33]. As noted above, M cannot be
However, the above method is excessively memory inten- increased indefinitely, owing to particle dynamics consider-
sive for calculations involving moderate to large numbers ations. Since we seek to identify colliding particle pairs
of particles. An alternative method that uses discrete cells only from the particles in the present cell and neighboring
in the computational domain has been found to be more ef- cells, this method is accurate only in the limit that nmax

p

Dt ! L/M; i.e., the acceptable range of M is given byficient.
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FIG. 3. (a) Comparison of CPU timings for a numerical simulation with a 643 fluid grid points and 643 particles. Both collision modules require
CPU times that are of the same order as the particle and fluid momentum updates. However, the proactive method of collision enactment is twice
as computationally intensive as the retroactive method. (b) Comparison of collisions per timestep obtained from both proactive and retroactive
procedures. For St 5 4.0, both methods yield almost identical results. However at St 5 0.4, the retroactive procedure significantly underpredicts
the collision frequency (by about 20%) indicating the presence of interpenetration and multiple collisions within a timestep.

1 # M ! L/nmax
p Dt. (5) to-collision. A collision is scheduled for the pair within a

timestep Dt if 0 # Dtij
c # Dt (where again Dtij

c refers to the
C. Identifying Collisions minimum positive value). The actual enactment of colli-

sions involves the following steps. The scheduled collisionsFor a hard sphere system, we can check for dynamic
are sorted in ascending order. The pair with the smallestinteractions between particles i.e., collisions, within the
Dtij

c is collided first, and the clock is advanced to the timetimestep Dt, in two ways:
t 1 Dtij

c . Note that each collision can potentially affect
(a) Proactive method. The algorithm is schematically future collisions involving either of the two particles,

outlined in Fig. 2a. We calculate the collision time, Dtij
c , thereby creating new, unscheduled collisions or eliminating

for all the neighbor pairs (O(SwJ N2
p/M3)) by solving the others that were previously scheduled. Hence we redo the

quadratic equation collision time computation for the two newly collided parti-
cles with all the other particles in the neighborhood. New

urij
p(t 1 Dtij

c)u 5 urij
p(t) 1 vij

pDtij
c u 5 (si 1 sj)/2, (6) collisions (within the same timestep) are added to the

schedule list and/or old ones that can no longer occur are
deleted. The schedule list is resorted in ascending orderwhere
and the implementation begins again with the next smallest
collision time. This continues until there are no more colli-vij

p ; vi
p 2 v j

p .
sions to be implemented in the schedule list. In principle,
the particle collisions could be enacted in a random orderFor particles that are not on a collision course, the solu-
(or the order in which they were scheduled), which wouldtion for Dtij

c found from Eq. (6) will be either complex or
eliminate the need for sorting and recalculation; however,negative. In either case, the value is rejected and the parti-
such a procedure may yield erroneous results in the casecle pair is eliminated from the list of potential colliding
of multiple collisions of a particle within the same timestep.partners. Most particle pairs will fall into this category.

The quadratic solution for the remaining pairs will yield (b) Retroactive method. Alternatively, we can advance
the particles to the end of the present timestep and thentwo positive values, the lesser of which constitutes the time-
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collided. Unfortunately, this method suffers from limita-
tion that it will not detect a collision if complete interpene-
tration occurs within a particular timestep. One can treat
this as an external limitation on the particle timestep. Nor-
mally the particle timestep in particle-laden DNS is fixed
by the fluid calculation considerations. However, if we are
to minimize the occurrences of complete interpenetration
we have to maintain nmax

p Dt/s ! 1 (a particle ‘‘Courant
number’’). It should be pointed out that the Courant num-
ber is dependent on the particle Stokes number. Particles
with low Stokes numbers, i.e., lighter, more energetic parti-
cles, will have a higher Courant number.

To obtain an objective time and precision comparison
between the two methods, we performed direct numerical
simulations using: (a) proactive strategy with sorting (best
case) and (b) retroactive strategy without sorting (worst
case). The simulations used 643 fluid grid points and 643

particles with Stokes numbers (Courant numbers) thatFIG. 4. Influence of fluid velocity interpolation scheme on the colli-
were either 0.4 (0.6) or 4.0 (0.4). Simulations were carriedsion frequency obtained from the simulation. All schemes used are in

agreement within error bounds. out on an IBM RS 6000 Model 370 workstation. The statis-
tical frequency of collision between particles was chosen
to compare the two strategies. The results are summarized
in Figure 3.locate collisions through the presence of overlap. This in-

It can be seen from Fig. 3a that while both methods ofvolves a logical test for each of the neighboring pairs.
collision implementation are as expensive as other aspectsParticle collisions have occurred when
of the calculation, the proactive method required a factor
of two times more CPU time than the retroactive method.

rij
p(t 1 Dt) # (si 1 sj)/2. (7)

However, as seen from Fig. 3b, the difference in collision
frequencies obtained by the two methods for the case of

Once the overlapping particles are identified the following St 5 0.4 is quite significant (p20%). For the heavier parti-
steps are carried out. First, the exact time of collision for cles St 5 4.0, both strategies yield almost identical collision
each colliding pair is determined from the following ex- frequencies. Recall that any difference in the results from
pression: these two methods is directly attributable to multiple colli-

sions and complete particle interpenetrations. We there-
urij

p(t 1 Dt) 2 vij
pDtij

c u 5 (si 1 sj)/2. (8) fore conclude that particle interpenetrations and multiple
collisions account for a significant percentage of all colli-
sions at low Stokes numbers, even though we are in theThe scheduled collisions are then implemented in either

a time-sequenced manner (descending order of the calcu- dilute limit. Results obtained from a retroactive collision
counting strategy become increasingly erroneous as thelated collision times) or a random order, under the same

penalty of erroneous treatment of multiple collisions dis- Stokes number is lowered. Obviously, the situation will
worsen as the particle concentration increases.cussed above. In the time-sequenced implementation, the

particles are moved backward in time to the point of colli-
sion, the elastic collision between the pair is affected, and

D. Influence of Interpolation Scheme on Collisions
the particles are again moved forward in time. Overlap
computations are redone for collided particles. New over- Given a precise representation of the fluid flow field,

the accuracy of computed particle trajectories is dictatedlaps are added to the schedule list while non-existent ones
are deleted, after which the entire list is resorted in de- by the interpolation scheme used to calculate fluid veloci-

ties at the various particle locations. As mentioned earlier,scending order. These instructions are carried out until
there are no remaining overlaps to consider. A schematic many investigations have been carried out in the past to

determine the computational cost and accuracy of differentof the algorithm is shown in Fig. 2b.
The advantage of the retroactive test is that it has a interpolation schemes [10, 12, 14, 38]. It is generally agreed

that linear interpolation of velocities is inadequate andrelatively simple test for determining when a collision has
occurred (Eq. (7)). Thus, the quadratic formula (Eq. (8)) schemes of order three or higher are required for reliable

particle trajectories. One can formulate these higher orderis only applied to the subset of particle pairs that have
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FIG. 5. Schematic of two spherical particles in a pure shear flow coming in contact at an angle of 458 to the velocity gradient.

schemes using either more fluid grid velocities (Lagrangian two spheres moving relative to each other as a result of
a uniform velocity gradient of magnitude c

.
(see Fig. 5).schemes) or velocity derivatives at the nearest grid points

(Hermitian schemes), taking advantage of the spectral rep- Without loss of generality, we take the particles to be
moving in the x-direction, with particle one moving in theresentation of the fluid flow field. This problem of velocity

interpolation is especially relevant in Lagrangian studies positive x-direction and particle two in the negative x-
direction. Based on these assumptions the non-dimen-of diffusion of fluid or other particles [38–40]. However,

as it pertains to the present study, it is observed that the sional equations of motion for sphere ‘‘m’’ (‘‘m’’ refers to
either particle 1 or 2—see Fig. 5) are given byinterpolation scheme does not appear to play a significant

role in determining the collision frequency. This is appar-
ent in Fig. 4 which shows the collision frequency for several dnm

px

dt
1

nm
px

St*
5

y m
p

St*
,

dxm
p

dt
5 nm

px
, (9)different interpolation schemes (linear, cubic Lagrangian,

cubic Hermitian, and fifth-order Lagrangian). Note the
agreement within calculated error bounds. The choice of dnm

py

dt
1

nm
px

St*
5 0,

dym
p

dt
5 nm

py
, (10)an interpolation scheme therefore should be determined

from other considerations, some of which are discussed in
Section 4.

where position, time, and velocity are made dimensionless,
based on the particle diameter s, the characteristic flowE. Multiple Collisions of a Single Pair
time 1/c

.
, and characteristic approach velocity c

.
s, respec-

Another important consideration in the dynamics of col- tively. For the purpose of this discussion, the particle
liding particles as compared to point masses is the question Stokes number is defined as St* ; c

.
tp . Furthermore, for

of multiple collisions between a single pair of particles. It the sake of simplicity, we assume the particles hit at an
has been observed that particle pairs with rapid response angle of incidence of 458 to the perpendicular (see Fig.
times can collide several times during a single ‘‘interac- 5). Then, the initial conditions immediately following the
tion.’’ This is an apparent artifact of the imprecise dynamics collision are
assumed for the particle pair during collision; that is, the
microscopic model used to estimate the force on a particle

t 5 01: nm
px

5 0, nm
py

5
(21)m21

2Ï2
,

(11)
does not take into account the presence of the second
particle. Consequently, what would likely be a single colli-
sion physically will manifest itself as multiple collisions xm

p 5
(21)m

2Ï2
, ym

p 5
(21)m21

2Ï2
.

in the simulation under certain circumstances. Multiple
collisions can be considered a crude approximation to the
true two-particle dynamics. Fortunately this artifact is in- The exact solution to Eqs. (9) and (10) with the above
significant with respect to overall particle dynamics be- initial conditions is
cause the fraction of particles that are colliding at any
given time is very small. However, caution must be used

nm
px

5
(21)m21

2Ï2
[(1 1 St*)(1 2 e2t/St*) 2 te2t/St*] (12)in determining collision frequencies from simulation data

because multiple collisions may produce spuriously large
collision frequencies. nm

px
5

(21)m21

2Ï2
e2t/St* (13)

To demonstrate the multiple collision effect, we consider
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FIG. 6. (a) Particle center trajectories for various values of St*. Notice that with increasing St*, particles travel greater distances before acquiring
appreciable momentum from the fluid. (b) Variation of the particle separation with time for various St*. Note that for St* # 0.45 the particle
separation crosses unity indicating that particles will undergo secondary collisions.

Recall that a collision has occurred whenever r12
p 5 1. A

xm
p 5

(21)m21

2Ï2
St*Ft 2 1

St*
1 (1 1 2St*)(e2t/St* 2 1) plot of r12

p versus time is shown in Fig. 6b for several values
of the parameter St*. As the particle Stokes number de-
creases, the particles pass each other by an increasingly

1 t(e2t/St* 1 1)G (14) narrow margin, colliding for a second time for St* # 0.45.
Once again, the presence of multiple collisions is not

very significant in terms of the overall dynamics of theym
p 5

(21)m21

2Ï2
[1 1 St*(1 2 e2t/St*)]. (15)

particles and fluid because at any given time there are only
a small number of particles that are colliding as compared
to non-colliding particles. Nevertheless, this effect is im-Particle trajectories, as depicted by the motion of the parti-
portant when counting collisions because it can lead tocle centers, are shown in Fig. 6a for several values of the
spuriously high collision frequencies, particularly at lowparameter St*. Immediately following the collision event
Stokes numbers. Indeed, in a companion study of collision(t 5 0), the particle velocities are pointed in the y direction,
frequencies in particle laden flows [4], it has been observedhowever, in time, they are deflected by the external flow
that reliable results could not be obtained for particlesfield. The rate of re-alignment of the particle velocity with
with St , 0.4. (Recall, for fully developed turbulence, thethe flow field is controlled by the parameter St*. For large
Stokes number is usually defined in terms of the Kolmo-St*, the ‘‘persistence’’ of the y-velocity is long and the
gorov eddy time scale, i.e., St 5 «1/2tp/n1/2.) This is attrib-particle easily escapes without a second collision. For
uted to the appearance of multiple collisions at the lowersmaller St*, the particles will more quickly regain x-mo-
values of the Stokes number. Remarkably, the theory out-mentum from the flow field, thus creating the possibility
lined above captures the critical value of the Stokes numberfor a second (third, fourth) collision. This can be seen
reasonably well (St 5 0.4), despite the simplified flow fieldmore easily if we consider the magnitude of the relative
considered. Apparently, the local flow field around collid-coordinate vector, r12

p defined by
ing particles in fully developed turbulence is effectively
represented by a linear shear flow, as originally suggestedr12

p 5 [(x1
p 2 x2

p)2 1 (y1
p 2 y2

p)2]1/2

(16) by Saffman and Turner [41]. More realistic collision rates
5 [(2xm

p )2 1 (2ym
p )2]1/2. for particles with Stokes numbers in the range 0 # St #
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0.4 can be obtained by either substituting more precise the presence of a finite-volume particle will produce a dis-
turbance velocity in the fluid that in principle can be deter-collision dynamics that include the effect of the second

particle on the flow field, or by eliminating multiple colli- mined from the Navier–Stokes equations [47]. Unfortu-
nately, the exact solution for the disturbance velocity atsions from the counting scheme.
arbitrary Reynolds number is presently unknown. Further-

F. Generalization to Other Potentials more, there remains the difficulty of reverse-interpolating
the disturbance velocity resulting from the particles backThe main feature in this particle calculation was the idea
to the fluid grid points. That is, there are important issuesof determining dynamic partners from a restricted subset
of conservation and discretization that must be resolvedof particles, i.e., the neighbor lists. More complicated po-
to make numerical simulations of finite-volume particlestentials, in principle, may include interactions amongst all
with two-way coupling precise. In this section, we developparticles in the system. We can reconcile the two ideas, if
conservation laws within the framework of a discrete simu-the potential under consideration is short-range and there-
lation. Furthermore, we address issues such as the effectfore can be truncated at a finite radius, rc , smaller than
of interpolations and reverse interpolations on the mecha-the computational domain, i.e. (rc , L). For example,
nism of energy transfer between the phases. The analysisa short-range repulsive force due to a lubrication layer
is similar in nature to the one proposed by Burgess et al.between the particles may be necessary for describing more
[48] in a different context.viscous flows. A second example is the possible presence

of electrostatic charges on the particles that may cause
A. Exact Equations of Kinetic Energy Transfera longer-range repulsive force (typically particles will be

charged negatively), as can hydrodynamic forces for larger The governing equations for the fluid and particle phases
particles [25, 42]. For the computation of dynamic partners have been summarized in Section 2 (Eqs. (1)–(4)). If we
to be accurate we simply require that the neighborhood define the kinetic energy per unit volume of fluid as e ;
scale is larger than rc (L/M . rc). Recognizing the numeri- Asru2

i , then the governing equation for e is
cal advantages of small neighborhoods, it is apparent that
the shorter the range of the postulated potential, the nu- e

t
1 = ? [(e 1 p)u]

(17)
merically faster the calculation will be. Since the hard
sphere potential represents the shortest range of interac-
tion possible (rc 5 s), the results obtained in our study

5 n=2e 2 « 2 ON
n51

mn
pu(x) ? [u(x) 2 vn

p(xn
p)]

t n
p

d(x 2 xn
p),

can be interpreted as a best case analysis.

4. TWO-WAY COUPLING where « is the local rate of dissipation of energy (per unit
volume) defined byExperimental studies report both augmentation and at-

tenuation of the fluid phase turbulence due to the presence
« 5 e=u: =u; (18)of particles [43–46]. Augmentation of fluid turbulence

seems contrary to conventional wisdom, which indicates
Eq. (17) is an exact expression for the kinetic energy ofthat the particles are an additional source of dissipation.
the fluid phase. If we integrate the result over the volumeHowever, when one considers the total energy in the system
of fluid in the periodic box we obtain the dynamic equation(fluid and dispersed phases), it rapidly becomes clear that
for the total kinetic energy in the fluid phase. The result isthe particles are indeed dissipative, and modulation of the

turbulence depends on aspects of spectral transfer due to
the particle source term in the fluid equation (see Eq. dE

dt
5 2Fn 2 ON

n51

mn
pu(xn

p) ? [u(xn
p) 2 vn

p(xn
p)]

t n
p (19)(4)). Nevertheless, several critical questions regarding the

precise nature of energy interchange between the fluid and
1 EE

S

[n=e 2 (e 1 p)u] ? n dS,particle phases remain unanswered, and perhaps numerical
simulation will provide an important, if not the only, means
for obtaining that information.

whereIn the past, numerous numerical studies have attempted
to describe the phenomenon of turbulence modification
by a dispersed phase due to so-called reverse coupling [7, E ; EEE

V

e dV (20)
8]. Since the particles in these simulations were ‘‘point
masses,’’ there was no basis for estimating the disturbance
velocity from the particles, thus ad hoc approximations for Fn ; EEE

V

« dV. (21)
the reverse coupling terms were used. In the present study,
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The surface integral shown in Eq. (19) accounts for contri- value for the fluid velocity; however, that would require a
complete Fourier transform per particle, or O(Np N3

n) oper-butions to the kinetic energy due to pressure work at the
boundary and external fluxes across the boundary of the ations, a computation that would be prohibitively expen-

sive (note, Nn is the total number of vertices). Instead,box, neither of which contributes in the periodic system
under consideration. Thus, the surface integral is identi- we choose to use interpolation functions similar to those

proposed in the literature [48, 49]. We shall limit the discus-cally zero, and the total kinetic energy of the fluid phase
is affected by only two terms: (i) a viscous loss term which sion to interpolations that use a weighted sum of velocities

in the neighborhood of the point of interest. For example,accounts for degradation of kinetic energy into thermal
energy; (ii) an energy exchange term which accounts for the velocity at a point xn

p can be defined by
gains or losses to the particle phase.

It is informative to conduct a similar analysis on the
particle phase so that a total energy balance can be con- u(xn

p) 5 ONn

n51
S(xn

p , xn)un, (24)
structed. The dynamic equation for the kinetic energy of
a single particle is found by dotting Eq. (2) with the particle

where the interpolation function S(xn
p , xn) is constrainedvelocity. Summing over the total number of particles

to satisfythen yields

dEp

dt
5 ON

n51

mn
pvn

p(xn
p) ? [u(xn

p) 2 vn
p(xn

p)]
t n

p
, (22) ONn

n51
S(xn

p , xn) 5 1 (25)

where Ep is the total kinetic energy of the particle phase. for arbitrary values of xn
p . Interpolation functions are often

(Since collisions are assumed to be elastic, the collision characterized by the order of accuracy of the interpolation
impulse force, Fjn , conserves the kinetic energy of the parti- (based on a local Taylor series expansion). In general,
cles, and therefore does not contribute to Eq. (22).) It higher orders can be achieved by incorporating more ver-
is immediately apparent from Eq. (22) that the energy tex points. We have written the expression in its most
exchange between the two phases is not conservative be- general form so that any-order interpolation scheme is rep-
cause the ‘‘weighting’’ of the velocity difference in the two resented.
expressions (Eqs. (19) and (22)) is different in each case. The spatially discrete update formula for the particle
This is more clearly evident if we sum Eqs. (19) and (22) velocity can then be expressed as (note, for the sake of
to obtain the dynamic equation for the total kinetic energy simplicity we do not consider the discretization in time,
in the system: although it would have no effect on the outcome)

dE
dt

1
dEp

dt
5 2 Fn 2 ON

n51

mn
p u u(xn

p) 2 vn
p(xn

p)u2

t n
p

. (23)

mn
p

dvn
p

dt
5 mn

p

FONn

n51
S(xn

p , xn)un 2 vn
pG

tn
p

. (26)
The total energy of the system is dissipated by two mecha-
nisms, a homogeneous term due to viscous losses through-
out the system and a term that results from the drag im- As shown previously for the continuum, the equation for
parted by one phase on the other. The drag forces, although the total particle energy is then found by dotting Eq. (26)
conservative in their momentum exchange, are dissipative with the particle velocity. Summing the result over the
in terms of the total kinetic energy. entire particle population results in the following expres-

sion for the total particle kinetic energy:
B. Consequences of Spatial Discretization

The exact equations of motions presented in Section 2
cannot be solved numerically in the form they are shown
because of the discrete representation of the fluid velocity

dEp

dt
5 ONp

n51
mn

p

FONn

n51
S(xn

p , xn)un 2 vn
pG

tn
p

vn
p . (27)

field in the numerical method. The fluid velocity at discrete
vertex points shall be designated by un, where the super-
script ‘‘n’’ identifies a particular vertex point. Numerical The fluid phase is updated using the pseudospectral

method outlined in Section 2. However, the forces from theapproximation of the fluid velocity at a particle position
xn

p is determined by interpolating the fluid velocities at the particle phase must be reverse-interpolated to the vertex
points of the grid since that is where the fluid phase isvertex points. In principle, we could use the complete Fou-

rier decomposition to obtain an excellent interpolated updated. If we define the total kinetic energy of the fluid
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phase as the sum of the kinetic energy over all the vertex of the volume of influence of an individual particle over
several grid volumes appears to be unphysical. Thus, onepoints, then its dynamic equation is
is tempted to use a high-order interpolation scheme for
forward interpolations and a low-order one for reversedE

dt
5 2Fn

(28)
interpolations, resulting in the error shown in Eq. (30).

The importance of high-order accuracy on the forward
interpolation has been well documented in the interpola-
tion studies referred to earlier. We suggest that the reverse

2 ONn

n51 5O
Np

n51

mn
p FONn

n951
S(xn

p , xn9)un9 2 vn
pG

tn
p

S*(xn
p , xn)un6, interpolation should use the same high-order scheme.

Given the possible unphysical ‘‘spreading’’ that results
from high-order reverse interpolation, we felt it was neces-
sary to test how significant that effect was on the numericalwhere the reverse interpolation function, S*(xp , xn), is not
simulation. The natural variable for characterizing this ef-necessarily the same as the forward function. As long as
fect is the turbulent energy spectrum since it representsS*(xp , xn) satisfies the constraint shown in Eq. (25), the
the distribution of energy on the basis of length scales. Itcombined momentum of the fluid and particle phases will
has been observed in previous simulations of particle-ladenautomatically be conserved. Furthermore, if the reverse
flows (with two-way coupling) that the fluid energy spec-interpolation scheme is the same as the forward, i.e., S*(xp ,
trum at low wavenumbers is suppressed, as compared toxn) 5 S(xp , xn), then the total kinetic energy (fluid plus
the particle-free case, while the energy spectrum is aug-particulates) will satisfy
mented at higher wavenumbers [7, 8]. That is, the energy
spectrum is observed to ‘‘pivot’’ around a characteristic
wavenumber. It should be noted that the observed pivot
point corresponds to a length scale that is much larger thandE

dt
1

dEp

dt
5 2 Fn 2 ON

n51

mn
p UONn

n51
S(xn

p , xn)un 2 vn
pU2

tn
p

(29)
the particle size and Kolmogorov scale; therefore the effect
is assumed to be a collective one involving clusters of
particles; however, this is speculative.which is the discrete equivalent of Eq. (23). If different

To test the effect of the reverse-coupling interpolationorders of interpolation are used, an error of the following
scheme, we have performed two simulations with identicalform will result:
parameter values but different grid resolutions. The low-
resolution case used a 483 grid and the high-resolution case
used a 963 grid. The fluid viscosity was fixed at a value
such that the energy spectrum was well resolved in theError 5 ONp

n51

mn
p FONn

n951
S(xn

p , xn9)un9 2 vn
pG

t n
p (30) low-resolution runs. The interpolation scheme was fixed

in the two runs, thus the physical volume of influence
of an individual particle was reduced by 1/8 in the high-3 ONn

n51
[S(xn

p , xn) 2 S*(xn
p , xn)]un.

resolution run. Therefore, if an appreciable error due to
the unphysical spreading of the particle volume of influence
was incurred, we would expect a significant disparity be-The order of the error associated with inconsistent interpo-

lations will be one plus the order of the scheme with maxi- tween the low and high resolution calculations. The parti-
cle–fluid simulations were performed for a sufficient timemum error. Of course, the cumulative error will be much

larger. Thus, it appears that a necessary condition to satisfy to observe the previously described ‘‘pivoting’’ of the spec-
trum. It can be seen from Fig. 7a that the decay of fluidthe global kinetic energy balance for the particle–fluid

system is to use the same interpolation function for forward turbulent energies for both resolutions is identical. Look-
ing for any spectral redistribution, the energy spectra areand reverse coupling. This is imperative for simulation

studies that investigate sensitive questions such as the rate shown collectively in Fig. 7b. Remarkably, the results from
the two resolutions appear to be essentially the same overof exchange of energy between the phases [7, 8].

There is an important dilemma introduced by the above the first 24 wavenumbers. Indeed, the pivot point remained
at k 5 6 for both runs. We therefore conclude that theresult. In general, it is advantageous to use a high-order

interpolation scheme for forward interpolation because it effect of the spreading due to reverse coupling is relatively
minor, at least over the scales that are resolved by thewill improve the accuracy of the estimated value of veloc-

ity. However, raising the order of the reverse-interpolation fluid simulation. Furthermore, since high-order accuracy
is essential for proper updating of the particle locations,increases the volume of influence of each individual parti-

cle. Given that the particle sizes are manifestly small as we recommend using the same order in the reverse interpo-
lation, thereby eliminating the error shown in Eq. (30).compared to the grid spacing (see Section 2), the spreading
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FIG. 7. Turbulent fluid energy in unladen (483) and particle laden (483 and 963) systems. The fluid energies for particle-laden fluids at both
resolutions are nearly identical. (b) Comparison of fluid and particle energy spectra for 483 and 963 runs. Note that the pivot or crossover point
remains stationary at k 5 6 for both resolutions.

5. CONCLUSIONS low values of the Stokes number. Furthermore, the compu-
tational cost of the former approach is roughly twice that

An algorithm for simulating finite-volume particles has of the latter.
been discussed. The introduction of more realistic particles One consequence of incorporating collisions into the
produces several new numerical challenges, two of which algorithm is evidence of multiple collisions between a sin-
are discussed in detail in this paper. They are: (i) numerical gle pair of particles. This effect appears to be an artifact
algorithm for handling particle–particle collisions; (ii) the of the model used to estimate the forces on particles that
proper formulation for reverse-interpolating the particle are undergoing collision. For example, two particles that
forces back to the computational grid. The critical issue have just collided will be driven apart by the impulse force
associated with the former is reducing the computational of the collision, however, if the particle response time is
cost of identifying the colliding pairs, an inherently sufficiently small the fluid may redirect them towards each
O(N2

p) operation. This was addressed by subdividing the other causing a second collision. This process may occur
computational domain into smaller ‘‘neighborhoods.’’ Po- several times until the particles ‘‘free’’ themselves from
tential partners for collision are selected only from particles the path of the other. Physically, you would expect the
within the neighborhood, substantially reducing the com- particles to undergo a single interaction, altering the local
putational budget (from O(N2

p) to O(N2
p/M3) operations). flow field so as not to produce multiple contacts. That

Two different methods of testing for collisions have been physics is not built into the model presented in this study.
presented. The first (proactive) anticipates all the collisions Fortunately, multiple collisions are unlikely to seriously
that will occur within a time increment Dt, and then enacts affect the overall particle dynamics, however, it was
them in the order that they occur. The second (retroactive) pointed out that determining particle collision frequencies
looks for particle–particle overlaps after the time incre- from simulation data requires care not to include the multi-
ment has been completed, and then resolves those overlaps ple collisions in your counting scheme. This is particularly
by enacting particle collisions retroactively in the order relevant for particles with low Stokes numbers (i.e.,
that they occurred until all overlaps have been accounted St , 0.4).
for. A comparison of the proactive method with sorting There has remained some controversy associated with
(best case) with the retroactive method without sorting the proper algorithm for interpolating the reverse coupling
(worst case) showed that the latter approach produced effects back onto the grid. The controversy arises from the

fact that the disturbance velocity created by the relativesignificant errors in the collision frequency, particularly at
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